Effect of Catalytic Cylinders on Autothermal Reforming of Methane for Hydrogen Production in a Microchamber Reactor

نویسندگان

  • Yunfei Yan
  • Hongliang Guo
  • Li Zhang
  • Junchen Zhu
  • Zhongqing Yang
  • Qiang Tang
  • Xin Ji
چکیده

A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autothermal Reforming of Methane with Integrated CO2 Capture in a Novel Fluidized Bed Membrane Reactor. Part 2 Comparison of Reactor Configurations

The reactor performance of two novel fluidized bed membrane reactor configurations for hydrogen production with integrated CO2 capture by autothermal reforming of methane (experimentally investigated in Part 1) have been compared using a phenomenological reactor model over a wide range of operating conditions (temperature, pressure, H2O/CH4 ratio and membrane area). It was found that the methan...

متن کامل

Simulating and Optimizing Hydrogen Production by Low-pressure Autothermal Reforming of Natural Gas using Non-dominated Sorting Genetic Algorithm-II

Environmental considerations will probably change automobile fuels from gasoline and gas-oil to hydrogen (as fuel cell) in the future. Problems of fossil fuels include producing gaseous pollutants, such as NOx, CO, and even SO2 (from incomplete-hydrotreated fuels), which need catalytic converters and greenhouse gas emission (such as CO2, CH4, N2O) from the exhaust with a drastic effect on globa...

متن کامل

A CFD model for methane autothermal reforming on Ru/ - Al2O3 catalyst

Hydrogen is the preferred fuel for fuel cells due to high reactivity for electrochemical reaction at anode. In the present study, a three dimensional CFD (Computational Fluid Dynamics) code was developed and validated to simulate the performance of a catalytic monolith fuel processor used for hydrogen generation. Methane autothermal reforming on 5% Ru/ -Al2O3 catalyst was selected as the reacti...

متن کامل

Autothermal Reforming of Methane with Integrated CO2 Capture in a Novel Fluidized Bed Membrane Reactor. Part 1: Experimental Demonstration

Two fluidized bed membrane reactor concepts for hydrogen production via autothermal reforming of methane with integrated CO2 capture are proposed. Ultrapure hydrogen is obtained via hydrogen perm-selective Pd-based membranes, while the required reaction energy is supplied by oxidizing part of the CH4 in situ in the methane combustion configuration or by combusting part of the permeated H2 in th...

متن کامل

Simulation of Methane Partial Oxidation in Porous Media Reactor for Hydrogen Production

The enactment of strict laws on reducing pollution and controlling combustion has given rise to the necessity of considering a new approach to energy supply in the future. One such approach is the use of hydrogen as an alternative to fossil fuels. Hydrogen and synthesis gas are typically produced through the partial oxidation of methane in porous media. This process was theoretically simula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014